
Bastille Documentation
Release 0.5.20191128-beta

Christer Edwards

Dec 07, 2019

Contents:

1 Installation 3
1.1 PKG . 3
1.2 ports . 3
1.3 GIT . 3

2 Network Requirements 5
2.1 Local Area Network . 5
2.2 Public Network . 6
2.3 /etc/pf.conf . 6

3 Usage 9

4 Targeting 11

5 Examples: Containers 13

6 Examples: Releases 15

7 Bastille sub-commands 17
7.1 bootstrap . 17
7.2 Releases . 17
7.3 Templates . 18
7.4 cmd . 18
7.5 console . 19
7.6 cp . 19
7.7 create . 20
7.8 destroy . 20
7.9 htop . 21
7.10 pkg . 21
7.11 restart . 24
7.12 service . 24
7.13 start . 24
7.14 stop . 25
7.15 sysrc . 25
7.16 top . 25
7.17 update . 26
7.18 upgrade . 26

i

7.19 verify . 26

8 Template 29
8.1 Applying Templates . 30

9 jail.conf 33
9.1 interface . 33
9.2 host.hostname . 34
9.3 exec.consolelog . 34
9.4 path . 34
9.5 securelevel . 34
9.6 devfs_ruleset . 35
9.7 enforce_statfs . 35
9.8 exec.start . 35
9.9 exec.stop . 36
9.10 exec.clean . 36
9.11 mount.devfs . 36
9.12 mount.fstab . 36

10 Copyright 37

ii

Bastille Documentation, Release 0.5.20191128-beta

Welcome to the official Bastille documentation. This collection of documents will outline installation and usage of
Bastille.

The latest version of this documentation can always be found at https://docs.bastillebsd.org.

Contents: 1

https://docs.bastillebsd.org

Bastille Documentation, Release 0.5.20191128-beta

2 Contents:

CHAPTER 1

Installation

Bastille is available in the official FreeBSD ports tree at sysutils/bastille. Binary packages available in quarterly and
latest repositories.

Current version is 0.5.20191128.

To install from the FreeBSD package repository:

• quarterly repository may be older version

• latest repository will match recent ports

1.1 PKG

pkg install bastille

To install from source (don’t worry, no compiling):

1.2 ports

make -C /usr/ports/sysutils/bastille install clean

1.3 GIT

git clone https://github.com/BastilleBSD/bastille.git
cd bastille
make install

This method will install the latest files from GitHub directly onto your system. It is verbose about the files it installs
(for later removal), and also has a make uninstall target.

3

Bastille Documentation, Release 0.5.20191128-beta

4 Chapter 1. Installation

CHAPTER 2

Network Requirements

Here’s the scenario. You’ve installed Bastille at home or in the cloud and want to get started putting applications in
secure little containers, but how do I get these containers on the network?

Bastille tries to be flexible about how to network containerized applications. The two most common methods are
described here. Consider both options to decide which design work best for your needs. One of the methods works
better across clouds while the other is simpler if used in local area networks.

As you’ve probably seen, Bastille containers require certain information when they are created. An IP address has to
be assigned to the container through which all network traffic will flow.

When the container is started the IP address assigned at creation will be bound to a network interface. In FreeBSD
these interfaces have different names, but look something like em0, bge0, re0, etc. On a virtual machine it may be
vtnet0. You get the idea. . .

Note: if you are running in the cloud and only have a single public IP you may want the Public Network option.
See below.

2.1 Local Area Network

I will cover the local area network (LAN) method first. This method is simpler to get going and works well in a home
network (or similar) where adding alias IP addresses is no problem.

Bastille allows you to define the interface you want the IP attached to when you create it. An example:

bastille create alcatraz 12.1-RELEASE 192.168.1.50 em0

When the alcatraz container is started it will add 192.168.1.50 as an IP alias to the em0 interface. It will then simply be
another member of the hosts network. Other networked systems (firewall permitting) should be able to reach services
at that address.

This method is the simplest. All you need to know is the name of your network interface and a free IP on your current
network.

5

Bastille Documentation, Release 0.5.20191128-beta

(Bastille does try to verify that the interface name you provide it is a valid interface. This validation has not been
exhaustively tested yet in Bastille’s beta state.)

2.2 Public Network

In this section I’ll describe how to network containers in a public network such as a cloud hosting provider (AWS,
digital ocean, vultr, etc)

In the public cloud you don’t often have access to multiple private IP addresses for your virtual machines. This means
if you want to create multiple containers and assign them all IP addresses, you’ll need to create a new network.

What I recommend is creating a cloned loopback interface (bastille0) and assigning all the containers private (rfc1918)
addresses on that interface. The setup I develop on and use Bastille day to day uses the 10.0.0.0/8 address range. I
have the ability to use whatever address I want within that range because I’ve created my own private network. The
host system then acts as the firewall, permitting and denying traffic as needed.

I find this setup the most flexible across all types of networks. It can be used in public and private networks just the
same and it allows me to keep containers off the network until I allow access.

Having said all that here are instructions I used to configure the network with a private loopback interface and system
firewall. The system firewall NATs traffic out of containers and can selectively redirect traffic into containers based on
connection ports (ie; 80, 443, etc.)

First, create the loopback interface:

ishmael ~ # sysrc cloned_interfaces+=lo1
ishmael ~ # sysrc ifconfig_lo1_name="bastille0"
ishmael ~ # service netif cloneup

Second, enable the firewall:

ishmael ~ # sysrc pf_enable="YES"

Create the firewall rules:

2.3 /etc/pf.conf

ext_if="vtnet0"

set block-policy return
scrub in on $ext_if all fragment reassemble
set skip on lo

table <jails> persist
nat on $ext_if from <jails> to any -> ($ext_if)

rdr example
rdr pass inet proto tcp from any to any port {80, 443} -> 10.17.89.45

block in all
pass out quick modulate state
antispoof for $ext_if inet
pass in inet proto tcp from any to any port ssh flags S/SA modulate state

• Make sure to change the ext_if variable to match your host system interface.

6 Chapter 2. Network Requirements

Bastille Documentation, Release 0.5.20191128-beta

• Make sure to include the last line (port ssh) or you’ll end up locked out.

Note: if you have an existing firewall, the key lines for in/out traffic to containers are:

nat on $ext_if from <jails> to any -> ($ext_if)

rdr example
rdr pass inet proto tcp from any to any port {80, 443} -> 10.17.89.45

The nat routes traffic from the loopback interface to the external interface for outbound access.

The rdr pass . . . will redirect traffic from the host firewall on port X to the ip of Container Y. The example shown
redirects web traffic (80 & 443) to the containers at 10.17.89.45.

Finally, start up the firewall:

ishmael ~ # service pf restart

At this point you’ll likely be disconnected from the host. Reconnect the ssh session and continue.

This step only needs to be done once in order to prepare the host.

2.3. /etc/pf.conf 7

Bastille Documentation, Release 0.5.20191128-beta

8 Chapter 2. Network Requirements

CHAPTER 3

Usage

ishmael ~ # bastille -h
Bastille is an open-source system for automating deployment and management of
containerized applications on FreeBSD.

Usage:
bastille command [ALL|glob] [args]

Available Commands:
bootstrap Bootstrap a FreeBSD release for container base.
cmd Execute arbitrary command on targeted container(s).
console Console into a running container.
cp cp(1) files from host to targeted container(s).
create Create a new thin container or a thick container if -T|--thick option

→˓specified.
destroy Destroy a stopped container or a FreeBSD release.
help Help about any command
htop Interactive process viewer (requires htop).
list List containers, releases, templates, or logs.
pkg Manipulate binary packages within targeted container(s). See pkg(8).
restart Restart a running container.
service Manage services within targeted containers(s).
start Start a stopped container.
stop Stop a running container.
sysrc Safely edit rc files within targeted container(s).
template Apply file templates to targeted container(s).
top Display and update information about the top(1) cpu processes.
update Update container base -pX release.
upgrade Upgrade container release to X.Y-RELEASE.
verify Compare release against a "known good" index.
zfs Manage (get|set) zfs attributes on targeted container(s).

Use "bastille -v|--version" for version information.
Use "bastille command -h|--help" for more information about a command.

9

Bastille Documentation, Release 0.5.20191128-beta

10 Chapter 3. Usage

CHAPTER 4

Targeting

Bastille uses a command-target-args syntax, meaning that each command requires a target. Targets are usually con-
tainers, but can also be releases.

Targeting a containers is done by providing the exact containers name.

Targeting a release is done by providing the release name. (Note: do note include the -pX point-release version.)

Bastille includes a pre-defined keyword ALL to target all running containers.

In the future I would like to support more options, including globbing, lists and regular-expressions.

11

Bastille Documentation, Release 0.5.20191128-beta

12 Chapter 4. Targeting

CHAPTER 5

Examples: Containers

ishmael ~ # bastille ...

command target args description
cmd ALL ‘sockstat -4’ execute sockstat -4 in ALL containers (ip4 sock-

ets)
console mariadb02 — console (shell) access to mariadb02
pkg web01 | ‘install nginx’ install nginx package in web01 container
pkg ALL upgrade upgrade packages in ALL containers
pkg ALL audit (CVE) audit packages in ALL containers
sysrc web01 nginx_enable=YES execute sysrc nginx_enable=YES in web01 con-

tainer
template ALL username/base apply username/base template to ALL contain-

ers
start web02 — start web02 container
cp | bastion03 | /tmp/resolv.conf-cf etc/resolv.conf | copy host-path to container-path in bastion03
create folsom 12.0-RELEASE 10.17.89.10 create 12.0 container named

folsom with IP

13

Bastille Documentation, Release 0.5.20191128-beta

14 Chapter 5. Examples: Containers

CHAPTER 6

Examples: Releases

ishmael ~ # bastille ...

command target args description
bootstrap 12.0-RELEASE — bootstrap 12.0-RELEASE release
update 11.3-RELEASE — update 11.2-RELEASE release
upgrade 11.2-RELEASE 11.3-RELEASE update 11.2-RELEASE release
verify 11.3-RELEASE — update 11.2-RELEASE release

15

Bastille Documentation, Release 0.5.20191128-beta

16 Chapter 6. Examples: Releases

CHAPTER 7

Bastille sub-commands

7.1 bootstrap

The bootstrap sub-command is used to download and extract releases and templates for use with Bastille containers. A
valid release is needed before containers can be created. Templates are optional but are managed in the same manner.

Note: your mileage may vary with unsupported releases and releases newer than the host system likely will NOT work
at all. Bastille tries to filter for valid release names. If you find it will not bootstrap a valid release, please let us know.

In this document we will describe using the bootstrap sub-command with both releases and templates. We begin with
releases.

7.2 Releases

7.2.1 Example

To bootstrap a release, run the bootstrap sub-command with the release version as the argument.

ishmael ~ # bastille bootstrap 11.3-RELEASE [update]
ishmael ~ # bastille bootstrap 12.0-RELEASE
ishmael ~ # bastille bootstrap 12.1-RELEASE

This command will ensure the required directory structures are in place and download the requested release. For each
requested release, bootstrap will download the base.txz. These files are verified (sha256 via MANIFEST file) before
they are extracted for use.

7.2.2 Tips

The bootstrap sub-command can now take (0.5.20191125+) an optional second argument of “update”. If this argument
is used, bastille update will be run immediately after the bootstrap, effectively bootstrapping and applying security
patches and errata in one motion.

17

Bastille Documentation, Release 0.5.20191128-beta

7.2.3 Notes

The bootstrap subcommand is generally only used once to prepare the system. The only other use case for the bootstrap
command is when a new FreeBSD version is released and you want to start deploying containers on that version.

To update a release as patches are made available, see the bastille update command.

Downloaded artifacts are stored in the bastille/cache/version directory. “bootstrapped” releases are stored in
bastille/releases/version.

To manually bootstrap a release (aka bring your own archive), place your archive in bastille/cache/name and extract to
bastille/releases/name. Your mileage may vary; let me know what happens.

7.3 Templates

Bastille aims to integrate container automation into the platform while maintaining a simple, uncomplicated design.
Templates are git repositories with automation definitions for packages, services, file overlays, etc.

To download one of these templates see the example below.

7.3.1 Example

ishmael ~ # bastille bootstrap https://gitlab.com/bastillebsd-templates/nginx
ishmael ~ # bastille bootstrap https://gitlab.com/bastillebsd-templates/mariadb-server
ishmael ~ # bastille bootstrap https://gitlab.com/bastillebsd-templates/python3

7.3.2 Tips

See the documentation on templates for more information on how they work and how you can create or customize
your own. Templates are a powerful part of Bastille and facilitate full container automation.

7.3.3 Notes

If you don’t want to bother with git to use templates you can create them manually on the Bastille system and apply
them.

Templates are stored in bastille/templates/namespace/name. If you’d like to create a new template on your local
system, simply create a new namespace within the templates directory and then one for the template. This namespacing
allows users and groups to have templates without conflicting template names.

Once you’ve created the directory structure you can begin filling it with template hooks. Once you have a minimum
number of hooks (at least one) you can begin applying your template.

7.4 cmd

To execute commands within the container you can use bastille cmd.

18 Chapter 7. Bastille sub-commands

Bastille Documentation, Release 0.5.20191128-beta

ishmael ~ # bastille cmd folsom 'ps -auxw'
[folsom]:
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 71464 0.0 0.0 14536 2000 - IsJ 4:52PM 0:00.00 /usr/sbin/syslogd -ss
root 77447 0.0 0.0 16632 2140 - SsJ 4:52PM 0:00.00 /usr/sbin/cron -J 60 -s
root 80591 0.0 0.0 18784 2340 1 R+J 4:53PM 0:00.00 ps -auxw

7.5 console

This sub-command launches a login shell into the container. Default is password-less root login.

ishmael ~ # bastille console folsom
[folsom]:
FreeBSD 12.1-RELEASE-p1 GENERIC

Welcome to FreeBSD!

Release Notes, Errata: https://www.FreeBSD.org/releases/
Security Advisories: https://www.FreeBSD.org/security/
FreeBSD Handbook: https://www.FreeBSD.org/handbook/
FreeBSD FAQ: https://www.FreeBSD.org/faq/
Questions List: https://lists.FreeBSD.org/mailman/listinfo/freebsd-questions/
FreeBSD Forums: https://forums.FreeBSD.org/

Documents installed with the system are in the /usr/local/share/doc/freebsd/
directory, or can be installed later with: pkg install en-freebsd-doc
For other languages, replace "en" with a language code like de or fr.

Show the version of FreeBSD installed: freebsd-version ; uname -a
Please include that output and any error messages when posting questions.
Introduction to manual pages: man man
FreeBSD directory layout: man hier

Edit /etc/motd to change this login announcement.
root@folsom:~ #

At this point you are logged in to the container and have full shell access. The system is yours to use and/or abuse as
you like. Any changes made inside the container are limited to the container.

7.6 cp

This command allows efficiently copying files from host to container(s).

ishmael ~ # bastille cp ALL /tmp/resolv.conf-cf etc/resolv.conf
[bastion]:

[unbound0]:

[unbound1]:

[squid]:

(continues on next page)

7.5. console 19

Bastille Documentation, Release 0.5.20191128-beta

(continued from previous page)

[nginx]:

[folsom]:

Unless you see errors reported in the output the cp was successful.

7.7 create

Bastille create uses any available bootstrapped release to create a lightweight container system. To create a container
simply provide a name, bootstrapped release and a private (rfc1918) IP address.

• name

• release

• ip

• interface (optional)

ishmael ~ # bastille create folsom 11.3-RELEASE 10.17.89.10 [interface]

RELEASE: 11.3-RELEASE.
NAME: folsom.
IP: 10.17.89.10.

This command will create a 11.3-RELEASE container assigning the 10.17.89.10 ip address to the new system.

I recommend using private (rfc1918) ip address ranges for your container. These ranges include:

• 10.0.0.0/8

• 172.16.0.0/12

• 192.168.0.0/16

Bastille does its best to validate the submitted ip is valid. This has not been thouroughly tested–I generally use the
10/8 range.

7.8 destroy

Containers can be destroyed and thrown away just as easily as they were created. Note: containers must be stopped
before destroyed.

ishmael ~ # bastille stop folsom
[folsom]:
folsom: removed

ishmael ~ # bastille destroy folsom
Deleting Container: folsom.
Note: containers console logs not destroyed.
/usr/local/bastille/logs/folsom_console.log

20 Chapter 7. Bastille sub-commands

Bastille Documentation, Release 0.5.20191128-beta

7.9 htop

This one runs htop inside the container. note: won’t work if you don’t have htop installed in the container.

7.10 pkg

To manage binary packages within the container use bastille pkg.

ishmael ~ # bastille pkg folsom 'install vim-console git-lite zsh'
[folsom]:
The package management tool is not yet installed on your system.
Do you want to fetch and install it now? [y/N]: y
Bootstrapping pkg from pkg+http://pkg.FreeBSD.org/FreeBSD:10:amd64/quarterly, please
→˓wait...
Verifying signature with trusted certificate pkg.freebsd.org.2013102301... done
[folsom] Installing pkg-1.10.5_5...
[folsom] Extracting pkg-1.10.5_5: 100%
Updating FreeBSD repository catalogue...
pkg: Repository FreeBSD load error: access repo file(/var/db/pkg/repo-FreeBSD.sqlite)
→˓failed: No such file or directory
[folsom] Fetching meta.txz: 100% 944 B 0.9kB/s 00:01
[folsom] Fetching packagesite.txz: 100% 6 MiB 3.4MB/s 00:02
Processing entries: 100%
FreeBSD repository update completed. 32550 packages processed.
All repositories are up to date.
Updating database digests format: 100%
The following 10 package(s) will be affected (of 0 checked):

New packages to be INSTALLED:
(continues on next page)

7.9. htop 21

Bastille Documentation, Release 0.5.20191128-beta

(continued from previous page)

vim-console: 8.1.0342
git-lite: 2.19.1
zsh: 5.6.2
expat: 2.2.6_1
curl: 7.61.1
libnghttp2: 1.33.0
ca_root_nss: 3.40
pcre: 8.42
gettext-runtime: 0.19.8.1_1
indexinfo: 0.3.1

Number of packages to be installed: 10

The process will require 77 MiB more space.
17 MiB to be downloaded.

Proceed with this action? [y/N]: y
[folsom] [1/10] Fetching vim-console-8.1.0342.txz: 100% 5 MiB 5.8MB/s 00:01
[folsom] [2/10] Fetching git-lite-2.19.1.txz: 100% 4 MiB 2.1MB/s 00:02
[folsom] [3/10] Fetching zsh-5.6.2.txz: 100% 4 MiB 4.4MB/s 00:01
[folsom] [4/10] Fetching expat-2.2.6_1.txz: 100% 109 KiB 111.8kB/s 00:01
[folsom] [5/10] Fetching curl-7.61.1.txz: 100% 1 MiB 1.2MB/s 00:01
[folsom] [6/10] Fetching libnghttp2-1.33.0.txz: 100% 107 KiB 109.8kB/s 00:01
[folsom] [7/10] Fetching ca_root_nss-3.40.txz: 100% 287 KiB 294.3kB/s 00:01
[folsom] [8/10] Fetching pcre-8.42.txz: 100% 1 MiB 1.2MB/s 00:01
[folsom] [9/10] Fetching gettext-runtime-0.19.8.1_1.txz: 100% 148 KiB 151.3kB/s
→˓00:01
[folsom] [10/10] Fetching indexinfo-0.3.1.txz: 100% 6 KiB 5.7kB/s 00:01
Checking integrity... done (0 conflicting)
[folsom] [1/10] Installing libnghttp2-1.33.0...
[folsom] [1/10] Extracting libnghttp2-1.33.0: 100%
[folsom] [2/10] Installing ca_root_nss-3.40...
[folsom] [2/10] Extracting ca_root_nss-3.40: 100%
[folsom] [3/10] Installing indexinfo-0.3.1...
[folsom] [3/10] Extracting indexinfo-0.3.1: 100%
[folsom] [4/10] Installing expat-2.2.6_1...
[folsom] [4/10] Extracting expat-2.2.6_1: 100%
[folsom] [5/10] Installing curl-7.61.1...
[folsom] [5/10] Extracting curl-7.61.1: 100%
[folsom] [6/10] Installing pcre-8.42...
[folsom] [6/10] Extracting pcre-8.42: 100%
[folsom] [7/10] Installing gettext-runtime-0.19.8.1_1...
[folsom] [7/10] Extracting gettext-runtime-0.19.8.1_1: 100%
[folsom] [8/10] Installing vim-console-8.1.0342...
[folsom] [8/10] Extracting vim-console-8.1.0342: 100%
[folsom] [9/10] Installing git-lite-2.19.1...
===> Creating groups.
Creating group 'git_daemon' with gid '964'.
===> Creating users
Creating user 'git_daemon' with uid '964'.
[folsom] [9/10] Extracting git-lite-2.19.1: 100%
[folsom] [10/10] Installing zsh-5.6.2...
[folsom] [10/10] Extracting zsh-5.6.2: 100%

The PKG sub-command can, of course, do more than just install. The expectation is that you can fully leverage the
pkg manager. This means, install, update, upgrade, audit, clean, autoremove, etc., etc.

22 Chapter 7. Bastille sub-commands

Bastille Documentation, Release 0.5.20191128-beta

ishmael ~ # bastille pkg ALL upgrade
[bastion]:
Updating pkg.bastillebsd.org repository catalogue...
[bastion] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[bastion] Fetching packagesite.txz: 100% 118 KiB 121.3kB/s 00:01
Processing entries: 100%
pkg.bastillebsd.org repository update completed. 493 packages processed.
All repositories are up to date.
Checking for upgrades (1 candidates): 100%
Processing candidates (1 candidates): 100%
Checking integrity... done (0 conflicting)
Your packages are up to date.

[unbound0]:
Updating pkg.bastillebsd.org repository catalogue...
[unbound0] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[unbound0] Fetching packagesite.txz: 100% 118 KiB 121.3kB/s 00:01
Processing entries: 100%
pkg.bastillebsd.org repository update completed. 493 packages processed.
All repositories are up to date.
Checking for upgrades (0 candidates): 100%
Processing candidates (0 candidates): 100%
Checking integrity... done (0 conflicting)
Your packages are up to date.

[unbound1]:
Updating pkg.bastillebsd.org repository catalogue...
[unbound1] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[unbound1] Fetching packagesite.txz: 100% 118 KiB 121.3kB/s 00:01
Processing entries: 100%
pkg.bastillebsd.org repository update completed. 493 packages processed.
All repositories are up to date.
Checking for upgrades (0 candidates): 100%
Processing candidates (0 candidates): 100%
Checking integrity... done (0 conflicting)
Your packages are up to date.

[squid]:
Updating pkg.bastillebsd.org repository catalogue...
[squid] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[squid] Fetching packagesite.txz: 100% 118 KiB 121.3kB/s 00:01
Processing entries: 100%
pkg.bastillebsd.org repository update completed. 493 packages processed.
All repositories are up to date.
Checking for upgrades (0 candidates): 100%
Processing candidates (0 candidates): 100%
Checking integrity... done (0 conflicting)
Your packages are up to date.

[nginx]:
Updating pkg.bastillebsd.org repository catalogue...
[nginx] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[nginx] Fetching packagesite.txz: 100% 118 KiB 121.3kB/s 00:01
Processing entries: 100%
pkg.bastillebsd.org repository update completed. 493 packages processed.
All repositories are up to date.
Checking for upgrades (1 candidates): 100%

(continues on next page)

7.10. pkg 23

Bastille Documentation, Release 0.5.20191128-beta

(continued from previous page)

Processing candidates (1 candidates): 100%
The following 1 package(s) will be affected (of 0 checked):

Installed packages to be UPGRADED:
nginx-lite: 1.14.0_14,2 -> 1.14.1,2

Number of packages to be upgraded: 1

315 KiB to be downloaded.

Proceed with this action? [y/N]: y
[nginx] [1/1] Fetching nginx-lite-1.14.1,2.txz: 100% 315 KiB 322.8kB/s 00:01
Checking integrity... done (0 conflicting)
[nginx] [1/1] Upgrading nginx-lite from 1.14.0_14,2 to 1.14.1,2...
===> Creating groups.
Using existing group 'www'.
===> Creating users
Using existing user 'www'.
[nginx] [1/1] Extracting nginx-lite-1.14.1,2: 100%
You may need to manually remove /usr/local/etc/nginx/nginx.conf if it is no longer
→˓needed.

7.11 restart

To restart a container you can use the bastille restart command.

ishmael ~ # bastille restart folsom
[folsom]:
folsom: removed

[folsom]:
folsom: created

7.12 service

The service sub-command allows for managing services within containers. This allows you to start, stop, restart, and
otherwise interact with services running inside the containers.

ishmael ~ # bastille service web01 'nginx start'
ishmael ~ # bastille service db01 'mysql-server restart'
ishmael ~ # bastille service proxy 'nginx configtest'

7.13 start

To start a container you can use the bastille start command.

ishmael ~ # bastille start folsom
[folsom]:
folsom: created

24 Chapter 7. Bastille sub-commands

Bastille Documentation, Release 0.5.20191128-beta

7.14 stop

To stop a container you can use the bastille stop command.

ishmael ~ # bastille stop folsom
[folsom]:
folsom: removed

7.15 sysrc

The sysrc sub-command allows for safely editing system configuration files. In container terms, this allows us to
toggle on/off services and options at startup.

ishmael ~ # bastille sysrc nginx nginx_enable="YES"
[nginx]:
nginx_enable: NO -> YES

See man sysrc(8) for more info.

7.16 top

This one runs top in that container.

7.14. stop 25

Bastille Documentation, Release 0.5.20191128-beta

7.17 update

The update command targets a release instead of a container. Because every container is based on a release, when the
release is updated all the containers are automatically updated as well.

If no updates are available, a message will be shown:

ishmael ~ # bastille update 11.2-RELEASE
Looking up update.FreeBSD.org mirrors... 2 mirrors found.
Fetching metadata signature for 11.2-RELEASE from update4.freebsd.org... done.
Fetching metadata index... done.
Inspecting system... done.
Preparing to download files... done.

No updates needed to update system to 11.2-RELEASE-p4.
No updates are available to install.

The older the release, however, the more updates will be available:

ishmael ~ # bastille update 10.4-RELEASE
Looking up update.FreeBSD.org mirrors... 2 mirrors found.
Fetching metadata signature for 10.4-RELEASE from update1.freebsd.org... done.
Fetching metadata index... done.
Fetching 2 metadata patches.. done.
Applying metadata patches... done.
Fetching 2 metadata files... done.
Inspecting system... done.
Preparing to download files... done.

The following files will be added as part of updating to 10.4-RELEASE-p13:
...[snip]...

To be safe, you may want to restart any containers that have been updated live.

7.18 upgrade

This command lets you upgrade a release to a new release. Depending on the workflow this can be similar to a
bootstrap.

ishmael ~ # bastille upgrade 11.2-RELEASE 12.0-RELEASE

7.19 verify

This command scans a bootstrapped release and validates that everything looks in order. This is not a 100% compre-
hensive check, but it compares the release against a “known good” index.

If you see errors or issues here, consider deleting and re-bootstrapping the release.

ishmael ~ # bastille verify 11.2-RELEASE
Looking up update.FreeBSD.org mirrors... 2 mirrors found.
Fetching metadata signature for 11.2-RELEASE from update1.freebsd.org... done.
Fetching metadata index... done.
Fetching 1 metadata patches. done.

(continues on next page)

26 Chapter 7. Bastille sub-commands

Bastille Documentation, Release 0.5.20191128-beta

(continued from previous page)

Applying metadata patches... done.
Fetching 1 metadata files... done.
Inspecting system... done.

7.19. verify 27

Bastille Documentation, Release 0.5.20191128-beta

28 Chapter 7. Bastille sub-commands

CHAPTER 8

Template

Bastille supports a templating system allowing you to apply files, pkgs and execute commands inside the containers
automatically.

Currently supported template hooks are: PRE, OVERLAY, PKG, SYSRC, CMD. Planned template hooks include:
FSTAB, PF, LOG.

Templates are created in ${bastille_prefix}/templates and can leverage any of the template hooks. Simply create a new
directory named after the template. eg;

mkdir -p /usr/local/bastille/templates/username/base

To leverage a template hook, create an UPPERCASE file in the root of the template directory named after the hook
you want to execute. eg;

echo "zsh vim-console git-lite htop" > /usr/local/bastille/templates/username/base/PKG
echo "/usr/bin/chsh -s /usr/local/bin/zsh" > /usr/local/bastille/templates/username/
→˓base/CMD
echo "etc\nrootjn usr" > /usr/local/bastille/templates/username/base/OVERLAY

Template hooks are executed in specific order and require specific syntax to work as expected. This table outlines
those requirements:

HOOK format example
PRE /bin/sh command mkdir -p /usr/local/my_app/html
OVERLAY path(s) etc root usr (one per line)
PKG port/pkg name(s) vim-console zsh git-lite tree htop
SYSRC sysrc command(s) nginx_enable=YES
SERVICE service command ‘nginx start’ OR ‘postfix reload’
CMD /bin/sh command /usr/bin/chsh -s /usr/local/bin/zsh

Note: SYSRC requires that NO quotes be used or that quotes (“) be escaped. ie; “)

In addition to supporting template hooks, Bastille supports overlaying files into the container. This is done by placing
the files in their full path, using the template directory as “/”.

29

Bastille Documentation, Release 0.5.20191128-beta

An example here may help. Think of bastille/templates/username/base, our example template, as the root of our
filesystem overlay. If you create an etc/hosts or etc/resolv.conf inside the base template directory, these can be over-
layed into your container.

Note: due to the way FreeBSD segregates user-space, the majority of your overlayed template files will be in usr/local.
The few general exceptions are the etc/hosts, etc/resolv.conf, and etc/rc.conf.local.

After populating usr/local/ with custom config files that your container will use, be sure to include usr in the template
OVERLAY definition. eg;

echo "etc\nusr" > /usr/local/bastille/templates/username/base/OVERLAY

The above example “etc usr” will include anything under “etc” and “usr” inside the template. You do not need to list
individual files. Just include the top-level directory name. List these top-level directories one per line.

8.1 Applying Templates

Containers must be running to apply templates.

Bastille includes a template command. This command requires a target and a template name. As covered in the
previous section, template names correspond to directory names in the bastille/templates directory.

ishmael ~ # bastille template ALL username/base
[proxy01]:
Copying files...
Copy complete.
Installing packages.
pkg already bootstrapped at /usr/local/sbin/pkg
vulnxml file up-to-date
0 problem(s) in the installed packages found.
Updating bastillebsd.org repository catalogue...
[cdn] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[cdn] Fetching packagesite.txz: 100% 121 KiB 124.3kB/s 00:01
Processing entries: 100%
bastillebsd.org repository update completed. 499 packages processed.
All repositories are up to date.
Checking integrity... done (0 conflicting)
The most recent version of packages are already installed
Updating services.
cron_flags: -J 60 -> -J 60
sendmail_enable: NONE -> NONE
syslogd_flags: -ss -> -ss
Executing final command(s).
chsh: user information updated
Template Complete.

[web01]:
Copying files...
Copy complete.
Installing packages.
pkg already bootstrapped at /usr/local/sbin/pkg
vulnxml file up-to-date
0 problem(s) in the installed packages found.
Updating pkg.bastillebsd.org repository catalogue...
[poudriere] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[poudriere] Fetching packagesite.txz: 100% 121 KiB 124.3kB/s 00:01

(continues on next page)

30 Chapter 8. Template

Bastille Documentation, Release 0.5.20191128-beta

(continued from previous page)

Processing entries: 100%
pkg.bastillebsd.org repository update completed. 499 packages processed.
Updating bastillebsd.org repository catalogue...
[poudriere] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[poudriere] Fetching packagesite.txz: 100% 121 KiB 124.3kB/s 00:01
Processing entries: 100%
bastillebsd.org repository update completed. 499 packages processed.
All repositories are up to date.
Checking integrity... done (0 conflicting)
The most recent version of packages are already installed
Updating services.
cron_flags: -J 60 -> -J 60
sendmail_enable: NONE -> NONE
syslogd_flags: -ss -> -ss
Executing final command(s).
chsh: user information updated
Template Complete.

Note: FreeBSD introduced container technology twenty years ago, long before the industry standardized on the term
“container”. Internally, FreeBSD refers to these containers as “jails”.

8.1. Applying Templates 31

Bastille Documentation, Release 0.5.20191128-beta

32 Chapter 8. Template

CHAPTER 9

jail.conf

In this section we’ll look at the default config for a new container. The defaults are sane for most applications, but if
you want to tweak the settings here they are.

A jail.conf template is used each time a new container is created. This template looks like this:

interface = {interface};
host.hostname = {name};
exec.consolelog = /usr/local/bastille/logs/{name}_console.log;
path = /usr/local/bastille/jails/{name}/root;
ip6 = disable;
securelevel = 2;
devfs_ruleset = 4;
enforce_statfs = 2;
exec.start = '/bin/sh /etc/rc';
exec.stop = '/bin/sh /etc/rc.shutdown';
exec.clean;
mount.devfs;
mount.fstab = /usr/local/bastille/jails/{name}/fstab;

{name} {
ip4.addr = x.x.x.x;

}

9.1 interface

interface
A network interface to add the jail's IP addresses (ip4.addr and
ip6.addr) to. An alias for each address will be added to the
interface before the jail is created, and will be removed from
the interface after the jail is removed.

33

Bastille Documentation, Release 0.5.20191128-beta

9.2 host.hostname

host.hostname
The hostname of the jail. Other similar parameters are
host.domainname, host.hostuuid and host.hostid.

9.3 exec.consolelog

exec.consolelog
A file to direct command output (stdout and stderr) to.

9.4 path

path
The directory which is to be the root of the jail. Any commands
run inside the jail, either by jail or from jexec(8), are run
from this directory.

9.5 securelevel

By default, Bastille containers run at securelevel = 2;. See below for the implications of kernel security levels and
when they might be altered.

Note: Bastille does not currently have any mechanism to automagically change securelevel settings. My recommen-
dation is this only be altered manually on a case-by-case basis and that “Highly secure mode” is a sane default for
most use cases.

The kernel runs with five different security levels. Any super-user
process can raise the level, but no process can lower it. The security
levels are:

-1 Permanently insecure mode - always run the system in insecure mode.
This is the default initial value.

0 Insecure mode - immutable and append-only flags may be turned off.
All devices may be read or written subject to their permissions.

1 Secure mode - the system immutable and system append-only flags may
not be turned off; disks for mounted file systems, /dev/mem and
/dev/kmem may not be opened for writing; /dev/io (if your platform
has it) may not be opened at all; kernel modules (see kld(4)) may
not be loaded or unloaded. The kernel debugger may not be entered
using the debug.kdb.enter sysctl. A panic or trap cannot be forced
using the debug.kdb.panic and other sysctl's.

2 Highly secure mode - same as secure mode, plus disks may not be
opened for writing (except by mount(2)) whether mounted or not.
This level precludes tampering with file systems by unmounting
them, but also inhibits running newfs(8) while the system is multi-

(continues on next page)

34 Chapter 9. jail.conf

Bastille Documentation, Release 0.5.20191128-beta

(continued from previous page)

user.

In addition, kernel time changes are restricted to less than or
equal to one second. Attempts to change the time by more than this
will log the message "Time adjustment clamped to +1 second".

3 Network secure mode - same as highly secure mode, plus IP packet
filter rules (see ipfw(8), ipfirewall(4) and pfctl(8)) cannot be
changed and dummynet(4) or pf(4) configuration cannot be adjusted.

9.6 devfs_ruleset

devfs_ruleset
The number of the devfs ruleset that is enforced for mounting
devfs in this jail. A value of zero (default) means no ruleset
is enforced. Descendant jails inherit the parent jail's devfs
ruleset enforcement. Mounting devfs inside a jail is possible
only if the allow.mount and allow.mount.devfs permissions are
effective and enforce_statfs is set to a value lower than 2.
Devfs rules and rulesets cannot be viewed or modified from inside
a jail.

NOTE: It is important that only appropriate device nodes in devfs
be exposed to a jail; access to disk devices in the jail may
permit processes in the jail to bypass the jail sandboxing by
modifying files outside of the jail. See devfs(8) for
information on how to use devfs rules to limit access to entries
in the per-jail devfs. A simple devfs ruleset for jails is
available as ruleset #4 in /etc/defaults/devfs.rules.

9.7 enforce_statfs

enforce_statfs
This determines what information processes in a jail are able to
get about mount points. It affects the behaviour of the
following syscalls: statfs(2), fstatfs(2), getfsstat(2), and
fhstatfs(2) (as well as similar compatibility syscalls). When
set to 0, all mount points are available without any
restrictions. When set to 1, only mount points below the jail's
chroot directory are visible. In addition to that, the path to
the jail's chroot directory is removed from the front of their
pathnames. When set to 2 (default), above syscalls can operate
only on a mount-point where the jail's chroot directory is
located.

9.8 exec.start

9.6. devfs_ruleset 35

Bastille Documentation, Release 0.5.20191128-beta

exec.start
Command(s) to run in the jail environment when a jail is created.
A typical command to run is "sh /etc/rc".

9.9 exec.stop

exec.stop
Command(s) to run in the jail environment before a jail is
removed, and after any exec.prestop commands have completed. A
typical command to run is "sh /etc/rc.shutdown".

9.10 exec.clean

exec.clean
Run commands in a clean environment. The environment is
discarded except for HOME, SHELL, TERM and USER. HOME and SHELL
are set to the target login's default values. USER is set to the
target login. TERM is imported from the current environment.
The environment variables from the login class capability
database for the target login are also set.

9.11 mount.devfs

mount.devfs
Mount a devfs(5) filesystem on the chrooted /dev directory, and
apply the ruleset in the devfs_ruleset parameter (or a default of
ruleset 4: devfsrules_jail) to restrict the devices visible
inside the jail.

9.12 mount.fstab

mount.fstab
An fstab(5) format file containing filesystems to mount before
creating a jail.

36 Chapter 9. jail.conf

CHAPTER 10

Copyright

This content is copyright Christer Edwards. All rights reserved.

Duplication of this content without the express written permission of the author is not permitted.

Note: this documentation is included with the source code in docs.

37

	Installation
	PKG
	ports
	GIT

	Network Requirements
	Local Area Network
	Public Network
	/etc/pf.conf

	Usage
	Targeting
	Examples: Containers
	Examples: Releases
	Bastille sub-commands
	bootstrap
	Releases
	Templates
	cmd
	console
	cp
	create
	destroy
	htop
	pkg
	restart
	service
	start
	stop
	sysrc
	top
	update
	upgrade
	verify

	Template
	Applying Templates

	jail.conf
	interface
	host.hostname
	exec.consolelog
	path
	securelevel
	devfs_ruleset
	enforce_statfs
	exec.start
	exec.stop
	exec.clean
	mount.devfs
	mount.fstab

	Copyright

