

Bastille

Welcome to the official Bastille documentation. This collection of documents
will outline installation and usage of Bastille.

The latest version of this documentation can always be found at
https://docs.bastillebsd.org.

Contents:

	Installation
	PKG

	ports

	GIT

	Network Requirements
	Local Area Network

	Public Network

	/etc/pf.conf

	Usage

	Targeting

	Examples: Containers

	Examples: Releases

	Bastille sub-commands
	bootstrap

	Releases

	Templates

	cmd

	console

	cp

	create

	destroy

	htop

	pkg

	restart

	service

	start

	stop

	sysrc

	top

	update

	upgrade

	verify

	Template
	Applying Templates

	jail.conf
	devfs_ruleset

	enforce_statfs

	exec.clean

	exec.consolelog

	exec.start

	exec.stop

	host.hostname

	interface

	mount.devfs

	mount.fstab

	path

	securelevel

	Copyright

Note: this documentation is included with the source code in docs.

Installation

Bastille is available in the official FreeBSD ports tree at
sysutils/bastille. Binary packages available in quarterly and latest
repositories.

Current version is 0.6.20200202.

To install from the FreeBSD package repository:

	quarterly repository may be older version

	latest repository will match recent ports

PKG

pkg install bastille

To install from source (don’t worry, no compiling):

ports

make -C /usr/ports/sysutils/bastille install clean

GIT

git clone https://github.com/BastilleBSD/bastille.git
cd bastille
make install

This method will install the latest files from GitHub directly onto your
system. It is verbose about the files it installs (for later removal), and also
has a make uninstall target.

Network Requirements

Here’s the scenario. You’ve installed Bastille at home or in the cloud and want
to get started putting applications in secure little containers, but how do I
get these containers on the network?

Bastille tries to be flexible about how to network containerized applications.
The two most common methods are described here. Consider both options to decide
which design work best for your needs. One of the methods works better across
clouds while the other is simpler if used in local area networks.

As you’ve probably seen, Bastille containers require certain information when
they are created. An IP address has to be assigned to the container through
which all network traffic will flow.

When the container is started the IP address assigned at creation will be bound
to a network interface. In FreeBSD these interfaces have different names, but
look something like em0, bge0, re0, etc. On a virtual machine it may be
vtnet0. You get the idea…

Note: if you are running in the cloud and only have a single public IP you
may want the Public Network option. See below.

Local Area Network

I will cover the local area network (LAN) method first. This method is simpler
to get going and works well in a home network (or similar) where adding alias
IP addresses is no problem.

Bastille allows you to define the interface you want the IP attached to when
you create it. An example:

bastille create alcatraz 12.1-RELEASE 192.168.1.50 em0

When the alcatraz container is started it will add 192.168.1.50 as an IP
alias to the em0 interface. It will then simply be another member of the
hosts network. Other networked systems (firewall permitting) should be able to
reach services at that address.

This method is the simplest. All you need to know is the name of your network
interface and a free IP on your current network.

(Bastille does try to verify that the interface name you provide it is a valid
interface. This validation has not been exhaustively tested yet in Bastille’s
beta state.)

Public Network

In this section I’ll describe how to network containers in a public network
such as a cloud hosting provider (AWS, digital ocean, vultr, etc)

In the public cloud you don’t often have access to multiple private IP
addresses for your virtual machines. This means if you want to create multiple
containers and assign them all IP addresses, you’ll need to create a new
network.

What I recommend is creating a cloned loopback interface (bastille0) and
assigning all the containers private (rfc1918) addresses on that interface. The
setup I develop on and use Bastille day to day uses the 10.0.0.0/8 address
range. I have the ability to use whatever address I want within that range
because I’ve created my own private network. The host system then acts as the
firewall, permitting and denying traffic as needed.

I find this setup the most flexible across all types of networks. It can be
used in public and private networks just the same and it allows me to keep
containers off the network until I allow access.

Having said all that here are instructions I used to configure the network with
a private loopback interface and system firewall. The system firewall NATs
traffic out of containers and can selectively redirect traffic into containers
based on connection ports (ie; 80, 443, etc.)

First, create the loopback interface:

ishmael ~ # sysrc cloned_interfaces+=lo1
ishmael ~ # sysrc ifconfig_lo1_name="bastille0"
ishmael ~ # service netif cloneup

Second, enable the firewall:

ishmael ~ # sysrc pf_enable="YES"

Create the firewall rules:

/etc/pf.conf

ext_if="vtnet0"

set block-policy return
scrub in on $ext_if all fragment reassemble
set skip on lo

table <jails> persist
nat on $ext_if from <jails> to any -> ($ext_if)

static rdr example
rdr pass inet proto tcp from any to any port {80, 443} -> 10.17.89.45

dynamic rdr anchor (see below)
rdr-anchor "rdr/*"

block in all
pass out quick modulate state
antispoof for $ext_if inet
pass in inet proto tcp from any to any port ssh flags S/SA modulate state

If you are using dynamic rdr also need to ensure that the external port
range you are using is open
pass in inet proto tcp any to any port <rdr-start>:<rdr-end>

	Make sure to change the ext_if variable to match your host system interface.

	Make sure to include the last line (port ssh) or you’ll end up locked out.

Note: if you have an existing firewall, the key lines for in/out traffic
to containers are:

nat on $ext_if from <jails> to any -> ($ext_if)

static rdr example
rdr pass inet proto tcp from any to any port {80, 443} -> 10.17.89.45

The nat routes traffic from the loopback interface to the external
interface for outbound access.

The rdr pass … will redirect traffic from the host firewall on port X to
the ip of Container Y. The example shown redirects web traffic (80 & 443) to the
containers at 10.17.89.45.

dynamic rdr anchor (see below)
rdr-anchor “rdr/*”

The rdr-anchor “rdr/*” enables dynamic rdr rules to be setup using the
bastille rdr command at runtime - eg.

bastille rdr <jail> tcp 2001 22 # Redirects tcp port 2001 on host to 22 on jail
bastille rdr <jail> udp 2053 53 # Same for udp
bastille rdr <jail> list # List dynamic rdr rules
bastille rdr <jail> clear # Clear dynamic rdr rules

Note that if you are redirecting ports where the host is also listening
(eg. ssh) you should make sure that the host service is not listening on
the cloned interface - eg. for ssh set sshd_flags in rc.conf

sshd_flags=”-o ListenAddress=<hostname>”

Finally, start up the firewall:

ishmael ~ # service pf restart

At this point you’ll likely be disconnected from the host. Reconnect the
ssh session and continue.

This step only needs to be done once in order to prepare the host.

Usage

ishmael ~ # bastille -h
Bastille is an open-source system for automating deployment and management of
containerized applications on FreeBSD.

Usage:
 bastille command [ALL|glob] [args]

Available Commands:
 bootstrap Bootstrap a FreeBSD release for container base.
 cmd Execute arbitrary command on targeted container(s).
 console Console into a running container.
 cp cp(1) files from host to targeted container(s).
 create Create a new thin container or a thick container if -T|--thick option specified.
 destroy Destroy a stopped container or a FreeBSD release.
 help Help about any command
 htop Interactive process viewer (requires htop).
 list List containers, releases, templates, or logs.
 pkg Manipulate binary packages within targeted container(s). See pkg(8).
 restart Restart a running container.
 service Manage services within targeted containers(s).
 start Start a stopped container.
 stop Stop a running container.
 sysrc Safely edit rc files within targeted container(s).
 template Apply file templates to targeted container(s).
 top Display and update information about the top(1) cpu processes.
 update Update container base -pX release.
 upgrade Upgrade container release to X.Y-RELEASE.
 verify Compare release against a "known good" index.
 zfs Manage (get|set) zfs attributes on targeted container(s).

Use "bastille -v|--version" for version information.
Use "bastille command -h|--help" for more information about a command.

Targeting

Bastille uses a command-target-args syntax, meaning that each command
requires a target. Targets are usually containers, but can also be releases.

Targeting a containers is done by providing the exact containers name.

Targeting a release is done by providing the release name. (Note: do note
include the -pX point-release version.)

Bastille includes a pre-defined keyword ALL to target all running containers.

In the future I would like to support more options, including globbing, lists
and regular-expressions.

Examples: Containers

ishmael ~ # bastille ...

	command

	target

	args

	description

	cmd

	ALL

	‘sockstat -4’

	execute sockstat -4 in ALL containers (ip4 sockets)

	console

	mariadb02

	—

	console (shell) access to mariadb02

	pkg

	web01 | ‘install nginx’

	install nginx package in web01 container

	pkg

	ALL

	upgrade

	upgrade packages in ALL containers

	pkg

	ALL

	audit

	(CVE) audit packages in ALL containers

	sysrc

	web01

	nginx_enable=YES

	execute sysrc nginx_enable=YES in web01 container

	template

	ALL

	username/base

	apply username/base template to ALL containers

	start

	web02

	—

	start web02 container

	cp | bastion03 | /tmp/resolv.conf-cf etc/resolv.conf | copy host-path to container-path in bastion03

	create

	folsom

	12.0-RELEASE 10.17.89.10

	create 12.0 container named folsom with IP

Examples: Releases

ishmael ~ # bastille ...

	command

	target

	args

	description

	bootstrap

	12.0-RELEASE

	—

	bootstrap 12.0-RELEASE release

	update

	11.3-RELEASE

	—

	update 11.2-RELEASE release

	upgrade

	11.2-RELEASE

	11.3-RELEASE

	update 11.2-RELEASE release

	verify

	11.3-RELEASE

	—

	update 11.2-RELEASE release

Bastille sub-commands

Contents:

	bootstrap

	Releases
	Example

	Tips

	Notes

	Templates
	Example

	Tips

	Notes

	cmd

	console

	cp

	create

	destroy

	htop

	pkg

	restart

	service

	start

	stop

	sysrc

	top

	update

	upgrade

	verify

bootstrap

The bootstrap sub-command is used to download and extract releases and
templates for use with Bastille containers. A valid release is needed before
containers can be created. Templates are optional but are managed in the same
manner.

Note: your mileage may vary with unsupported releases and releases newer
than the host system likely will NOT work at all. Bastille tries to filter for
valid release names. If you find it will not bootstrap a valid release, please
let us know.

In this document we will describe using the bootstrap sub-command with both
releases and templates. We begin with releases.

Releases

Example

To bootstrap a release, run the bootstrap sub-command with the
release version as the argument.

ishmael ~ # bastille bootstrap 11.3-RELEASE [update]
ishmael ~ # bastille bootstrap 12.0-RELEASE
ishmael ~ # bastille bootstrap 12.1-RELEASE

This command will ensure the required directory structures are in place and
download the requested release. For each requested release, bootstrap will
download the base.txz. These files are verified (sha256 via MANIFEST file)
before they are extracted for use.

Tips

The bootstrap sub-command can now take (0.5.20191125+) an optional second
argument of “update”. If this argument is used, bastille update will be run
immediately after the bootstrap, effectively bootstrapping and applying
security patches and errata in one motion.

Notes

The bootstrap subcommand is generally only used once to prepare the system. The
only other use case for the bootstrap command is when a new FreeBSD version is
released and you want to start deploying containers on that version.

To update a release as patches are made available, see the bastille update
command.

Downloaded artifacts are stored in the bastille/cache/version directory.
“bootstrapped” releases are stored in bastille/releases/version.

To manually bootstrap a release (aka bring your own archive), place your
archive in bastille/cache/name and extract to bastille/releases/name. Your
mileage may vary; let me know what happens.

Templates

Bastille aims to integrate container automation into the platform while
maintaining a simple, uncomplicated design. Templates are git repositories with
automation definitions for packages, services, file overlays, etc.

To download one of these templates see the example below.

Example

ishmael ~ # bastille bootstrap https://gitlab.com/bastillebsd-templates/nginx
ishmael ~ # bastille bootstrap https://gitlab.com/bastillebsd-templates/mariadb-server
ishmael ~ # bastille bootstrap https://gitlab.com/bastillebsd-templates/python3

Tips

See the documentation on templates for more information on how they work and
how you can create or customize your own. Templates are a powerful part of
Bastille and facilitate full container automation.

Notes

If you don’t want to bother with git to use templates you can create them
manually on the Bastille system and apply them.

Templates are stored in bastille/templates/namespace/name. If you’d like to
create a new template on your local system, simply create a new namespace
within the templates directory and then one for the template. This namespacing
allows users and groups to have templates without conflicting template names.

Once you’ve created the directory structure you can begin filling it with
template hooks. Once you have a minimum number of hooks (at least one) you can
begin applying your template.

cmd

To execute commands within the container you can use bastille cmd.

ishmael ~ # bastille cmd folsom 'ps -auxw'
[folsom]:
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 71464 0.0 0.0 14536 2000 - IsJ 4:52PM 0:00.00 /usr/sbin/syslogd -ss
root 77447 0.0 0.0 16632 2140 - SsJ 4:52PM 0:00.00 /usr/sbin/cron -J 60 -s
root 80591 0.0 0.0 18784 2340 1 R+J 4:53PM 0:00.00 ps -auxw

console

This sub-command launches a login shell into the container. Default is password-less
root login.

ishmael ~ # bastille console folsom
[folsom]:
FreeBSD 12.1-RELEASE-p1 GENERIC

Welcome to FreeBSD!

Release Notes, Errata: https://www.FreeBSD.org/releases/
Security Advisories: https://www.FreeBSD.org/security/
FreeBSD Handbook: https://www.FreeBSD.org/handbook/
FreeBSD FAQ: https://www.FreeBSD.org/faq/
Questions List: https://lists.FreeBSD.org/mailman/listinfo/freebsd-questions/
FreeBSD Forums: https://forums.FreeBSD.org/

Documents installed with the system are in the /usr/local/share/doc/freebsd/
directory, or can be installed later with: pkg install en-freebsd-doc
For other languages, replace "en" with a language code like de or fr.

Show the version of FreeBSD installed: freebsd-version ; uname -a
Please include that output and any error messages when posting questions.
Introduction to manual pages: man man
FreeBSD directory layout: man hier

Edit /etc/motd to change this login announcement.
root@folsom:~ #

At this point you are logged in to the container and have full shell access. The
system is yours to use and/or abuse as you like. Any changes made inside the
container are limited to the container.

cp

This command allows efficiently copying files from host to container(s).

ishmael ~ # bastille cp ALL /tmp/resolv.conf-cf etc/resolv.conf
[bastion]:

[unbound0]:

[unbound1]:

[squid]:

[nginx]:

[folsom]:

Unless you see errors reported in the output the cp was successful.

create

Bastille create uses any available bootstrapped release to create a
lightweight container system. To create a container simply provide a name,
bootstrapped release and a private (rfc1918) IP address.

	name

	release

	ip

	interface (optional)

ishmael ~ # bastille create folsom 11.3-RELEASE 10.17.89.10 [interface]

RELEASE: 11.3-RELEASE.
NAME: folsom.
IP: 10.17.89.10.

This command will create a 11.3-RELEASE container assigning the 10.17.89.10 ip
address to the new system.

I recommend using private (rfc1918) ip address ranges for your container. These
ranges include:

	10.0.0.0/8

	172.16.0.0/12

	192.168.0.0/16

Bastille does its best to validate the submitted ip is valid. This has not been
thouroughly tested–I generally use the 10/8 range.

destroy

Containers can be destroyed and thrown away just as easily as they were
created. Note: containers must be stopped before destroyed.

ishmael ~ # bastille stop folsom
[folsom]:
folsom: removed

ishmael ~ # bastille destroy folsom
Deleting Container: folsom.
Note: containers console logs not destroyed.
/usr/local/bastille/logs/folsom_console.log

htop

This one runs htop inside the container.
note: won’t work if you don’t have htop installed in the container.

[image: bastille htop container]

pkg

To manage binary packages within the container use bastille pkg.

ishmael ~ # bastille pkg folsom 'install vim-console git-lite zsh'
[folsom]:
The package management tool is not yet installed on your system.
Do you want to fetch and install it now? [y/N]: y
Bootstrapping pkg from pkg+http://pkg.FreeBSD.org/FreeBSD:10:amd64/quarterly, please wait...
Verifying signature with trusted certificate pkg.freebsd.org.2013102301... done
[folsom] Installing pkg-1.10.5_5...
[folsom] Extracting pkg-1.10.5_5: 100%
Updating FreeBSD repository catalogue...
pkg: Repository FreeBSD load error: access repo file(/var/db/pkg/repo-FreeBSD.sqlite) failed: No such file or directory
[folsom] Fetching meta.txz: 100% 944 B 0.9kB/s 00:01
[folsom] Fetching packagesite.txz: 100% 6 MiB 3.4MB/s 00:02
Processing entries: 100%
FreeBSD repository update completed. 32550 packages processed.
All repositories are up to date.
Updating database digests format: 100%
The following 10 package(s) will be affected (of 0 checked):

New packages to be INSTALLED:
 vim-console: 8.1.0342
 git-lite: 2.19.1
 zsh: 5.6.2
 expat: 2.2.6_1
 curl: 7.61.1
 libnghttp2: 1.33.0
 ca_root_nss: 3.40
 pcre: 8.42
 gettext-runtime: 0.19.8.1_1
 indexinfo: 0.3.1

Number of packages to be installed: 10

The process will require 77 MiB more space.
17 MiB to be downloaded.

Proceed with this action? [y/N]: y
[folsom] [1/10] Fetching vim-console-8.1.0342.txz: 100% 5 MiB 5.8MB/s 00:01
[folsom] [2/10] Fetching git-lite-2.19.1.txz: 100% 4 MiB 2.1MB/s 00:02
[folsom] [3/10] Fetching zsh-5.6.2.txz: 100% 4 MiB 4.4MB/s 00:01
[folsom] [4/10] Fetching expat-2.2.6_1.txz: 100% 109 KiB 111.8kB/s 00:01
[folsom] [5/10] Fetching curl-7.61.1.txz: 100% 1 MiB 1.2MB/s 00:01
[folsom] [6/10] Fetching libnghttp2-1.33.0.txz: 100% 107 KiB 109.8kB/s 00:01
[folsom] [7/10] Fetching ca_root_nss-3.40.txz: 100% 287 KiB 294.3kB/s 00:01
[folsom] [8/10] Fetching pcre-8.42.txz: 100% 1 MiB 1.2MB/s 00:01
[folsom] [9/10] Fetching gettext-runtime-0.19.8.1_1.txz: 100% 148 KiB 151.3kB/s 00:01
[folsom] [10/10] Fetching indexinfo-0.3.1.txz: 100% 6 KiB 5.7kB/s 00:01
Checking integrity... done (0 conflicting)
[folsom] [1/10] Installing libnghttp2-1.33.0...
[folsom] [1/10] Extracting libnghttp2-1.33.0: 100%
[folsom] [2/10] Installing ca_root_nss-3.40...
[folsom] [2/10] Extracting ca_root_nss-3.40: 100%
[folsom] [3/10] Installing indexinfo-0.3.1...
[folsom] [3/10] Extracting indexinfo-0.3.1: 100%
[folsom] [4/10] Installing expat-2.2.6_1...
[folsom] [4/10] Extracting expat-2.2.6_1: 100%
[folsom] [5/10] Installing curl-7.61.1...
[folsom] [5/10] Extracting curl-7.61.1: 100%
[folsom] [6/10] Installing pcre-8.42...
[folsom] [6/10] Extracting pcre-8.42: 100%
[folsom] [7/10] Installing gettext-runtime-0.19.8.1_1...
[folsom] [7/10] Extracting gettext-runtime-0.19.8.1_1: 100%
[folsom] [8/10] Installing vim-console-8.1.0342...
[folsom] [8/10] Extracting vim-console-8.1.0342: 100%
[folsom] [9/10] Installing git-lite-2.19.1...
===> Creating groups.
Creating group 'git_daemon' with gid '964'.
===> Creating users
Creating user 'git_daemon' with uid '964'.
[folsom] [9/10] Extracting git-lite-2.19.1: 100%
[folsom] [10/10] Installing zsh-5.6.2...
[folsom] [10/10] Extracting zsh-5.6.2: 100%

The PKG sub-command can, of course, do more than just install. The
expectation is that you can fully leverage the pkg manager. This means,
install, update, upgrade, audit, clean, autoremove, etc., etc.

ishmael ~ # bastille pkg ALL upgrade
[bastion]:
Updating pkg.bastillebsd.org repository catalogue...
[bastion] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[bastion] Fetching packagesite.txz: 100% 118 KiB 121.3kB/s 00:01
Processing entries: 100%
pkg.bastillebsd.org repository update completed. 493 packages processed.
All repositories are up to date.
Checking for upgrades (1 candidates): 100%
Processing candidates (1 candidates): 100%
Checking integrity... done (0 conflicting)
Your packages are up to date.

[unbound0]:
Updating pkg.bastillebsd.org repository catalogue...
[unbound0] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[unbound0] Fetching packagesite.txz: 100% 118 KiB 121.3kB/s 00:01
Processing entries: 100%
pkg.bastillebsd.org repository update completed. 493 packages processed.
All repositories are up to date.
Checking for upgrades (0 candidates): 100%
Processing candidates (0 candidates): 100%
Checking integrity... done (0 conflicting)
Your packages are up to date.

[unbound1]:
Updating pkg.bastillebsd.org repository catalogue...
[unbound1] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[unbound1] Fetching packagesite.txz: 100% 118 KiB 121.3kB/s 00:01
Processing entries: 100%
pkg.bastillebsd.org repository update completed. 493 packages processed.
All repositories are up to date.
Checking for upgrades (0 candidates): 100%
Processing candidates (0 candidates): 100%
Checking integrity... done (0 conflicting)
Your packages are up to date.

[squid]:
Updating pkg.bastillebsd.org repository catalogue...
[squid] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[squid] Fetching packagesite.txz: 100% 118 KiB 121.3kB/s 00:01
Processing entries: 100%
pkg.bastillebsd.org repository update completed. 493 packages processed.
All repositories are up to date.
Checking for upgrades (0 candidates): 100%
Processing candidates (0 candidates): 100%
Checking integrity... done (0 conflicting)
Your packages are up to date.

[nginx]:
Updating pkg.bastillebsd.org repository catalogue...
[nginx] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[nginx] Fetching packagesite.txz: 100% 118 KiB 121.3kB/s 00:01
Processing entries: 100%
pkg.bastillebsd.org repository update completed. 493 packages processed.
All repositories are up to date.
Checking for upgrades (1 candidates): 100%
Processing candidates (1 candidates): 100%
The following 1 package(s) will be affected (of 0 checked):

Installed packages to be UPGRADED:
 nginx-lite: 1.14.0_14,2 -> 1.14.1,2

Number of packages to be upgraded: 1

315 KiB to be downloaded.

Proceed with this action? [y/N]: y
[nginx] [1/1] Fetching nginx-lite-1.14.1,2.txz: 100% 315 KiB 322.8kB/s 00:01
Checking integrity... done (0 conflicting)
[nginx] [1/1] Upgrading nginx-lite from 1.14.0_14,2 to 1.14.1,2...
===> Creating groups.
Using existing group 'www'.
===> Creating users
Using existing user 'www'.
[nginx] [1/1] Extracting nginx-lite-1.14.1,2: 100%
You may need to manually remove /usr/local/etc/nginx/nginx.conf if it is no longer needed.

restart

To restart a container you can use the bastille restart command.

ishmael ~ # bastille restart folsom
[folsom]:
folsom: removed

[folsom]:
folsom: created

service

The service sub-command allows for managing services within containers. This
allows you to start, stop, restart, and otherwise interact with services
running inside the containers.

ishmael ~ # bastille service web01 'nginx start'
ishmael ~ # bastille service db01 'mysql-server restart'
ishmael ~ # bastille service proxy 'nginx configtest'
ishmael ~ # bastille service proxy 'nginx enable'
ishmael ~ # bastille service proxy 'nginx disable'
ishmael ~ # bastille service proxy 'nginx delete'

start

To start a container you can use the bastille start command.

ishmael ~ # bastille start folsom
[folsom]:
folsom: created

stop

To stop a container you can use the bastille stop command.

ishmael ~ # bastille stop folsom
[folsom]:
folsom: removed

sysrc

The sysrc sub-command allows for safely editing system configuration files.
In container terms, this allows us to toggle on/off services and options at startup.

ishmael ~ # bastille sysrc nginx nginx_enable="YES"
[nginx]:
nginx_enable: NO -> YES

See man sysrc(8) for more info.

top

This one runs top in that container.

[image: bastille top container]

update

The update command targets a release instead of a container. Because every container is
based on a release, when the release is updated all the containers are automatically
updated as well.

If no updates are available, a message will be shown:

ishmael ~ # bastille update 11.2-RELEASE
Looking up update.FreeBSD.org mirrors... 2 mirrors found.
Fetching metadata signature for 11.2-RELEASE from update4.freebsd.org... done.
Fetching metadata index... done.
Inspecting system... done.
Preparing to download files... done.

No updates needed to update system to 11.2-RELEASE-p4.
No updates are available to install.

The older the release, however, the more updates will be available:

ishmael ~ # bastille update 10.4-RELEASE
Looking up update.FreeBSD.org mirrors... 2 mirrors found.
Fetching metadata signature for 10.4-RELEASE from update1.freebsd.org... done.
Fetching metadata index... done.
Fetching 2 metadata patches.. done.
Applying metadata patches... done.
Fetching 2 metadata files... done.
Inspecting system... done.
Preparing to download files... done.

The following files will be added as part of updating to 10.4-RELEASE-p13:
...[snip]...

To be safe, you may want to restart any containers that have been updated live.

upgrade

This command lets you upgrade a release to a new release. Depending on the
workflow this can be similar to a bootstrap.

ishmael ~ # bastille upgrade 11.2-RELEASE 12.0-RELEASE

verify

This command scans a bootstrapped release and validates that everything looks
in order. This is not a 100% comprehensive check, but it compares the release
against a “known good” index.

If you see errors or issues here, consider deleting and re-bootstrapping
the release.

ishmael ~ # bastille verify 11.2-RELEASE
Looking up update.FreeBSD.org mirrors... 2 mirrors found.
Fetching metadata signature for 11.2-RELEASE from update1.freebsd.org... done.
Fetching metadata index... done.
Fetching 1 metadata patches. done.
Applying metadata patches... done.
Fetching 1 metadata files... done.
Inspecting system... done.

Template

Looking for ready made CI/CD validated [Bastille
Templates](https://gitlab.com/BastilleBSD-Templates)?

Bastille supports a templating system allowing you to apply files, pkgs and
execute commands inside the containers automatically.

Currently supported template hooks are: LIMITS, INCLUDE, PRE, FSTAB,
PKG, OVERLAY, SYSRC, SERVICE, CMD.
Planned template hooks include: PF, LOG.

Templates are created in ${bastille_prefix}/templates and can leverage any of
the template hooks. Simply create a new directory named after the template. eg;

mkdir -p /usr/local/bastille/templates/username/base

To leverage a template hook, create an UPPERCASE file in the root of the
template directory named after the hook you want to execute. eg;

echo "zsh vim-console git-lite htop" > /usr/local/bastille/templates/username/base/PKG
echo "/usr/bin/chsh -s /usr/local/bin/zsh" > /usr/local/bastille/templates/username/base/CMD
echo "usr" > /usr/local/bastille/templates/username/base/OVERLAY

Template hooks are executed in specific order and require specific syntax to
work as expected. This table outlines those requirements:

	HOOK

	format

	example

	LIMITS

	resource value

	memoryuse 1G

	INCLUDE

	template path/URL

	http?://TEMPLATE_URL or project/path

	PRE

	/bin/sh command

	mkdir -p /usr/local/my_app/html

	FSTAB

	fstab syntax

	/host/path container/path nullfs ro 0 0

	PKG

	port/pkg name(s)

	vim-console zsh git-lite tree htop

	OVERLAY

	path(s)

	etc root usr (one per line)

	SYSRC

	sysrc command(s)

	nginx_enable=YES

	SERVICE

	service command

	‘nginx start’ OR ‘postfix reload’

	CMD

	/bin/sh command

	/usr/bin/chsh -s /usr/local/bin/zsh

Note: SYSRC requires that NO quotes be used or that quotes (“) be escaped
ie; (")

In addition to supporting template hooks, Bastille supports overlaying
files into the container. This is done by placing the files in their full path,
using the template directory as “/”.

An example here may help. Think of bastille/templates/username/base, our
example template, as the root of our filesystem overlay. If you create an
etc/hosts or etc/resolv.conf inside the base template directory, these
can be overlayed into your container.

Note: due to the way FreeBSD segregates user-space, the majority of your
overlayed template files will be in usr/local. The few general
exceptions are the etc/hosts, etc/resolv.conf, and
etc/rc.conf.local.

After populating usr/local with custom config files that your container will
use, be sure to include usr in the template OVERLAY definition. eg;

echo "usr" > /usr/local/bastille/templates/username/base/OVERLAY

The above example “usr” will include anything under “usr” inside the template.
You do not need to list individual files. Just include the top-level directory
name. List these top-level directories one per line.

Applying Templates

Containers must be running to apply templates.

Bastille includes a template command. This command requires a target and a
template name. As covered in the previous section, template names correspond to
directory names in the bastille/templates directory.

ishmael ~ # bastille template ALL username/base
[proxy01]:
Copying files...
Copy complete.
Installing packages.
pkg already bootstrapped at /usr/local/sbin/pkg
vulnxml file up-to-date
0 problem(s) in the installed packages found.
Updating bastillebsd.org repository catalogue...
[cdn] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[cdn] Fetching packagesite.txz: 100% 121 KiB 124.3kB/s 00:01
Processing entries: 100%
bastillebsd.org repository update completed. 499 packages processed.
All repositories are up to date.
Checking integrity... done (0 conflicting)
The most recent version of packages are already installed
Updating services.
cron_flags: -J 60 -> -J 60
sendmail_enable: NONE -> NONE
syslogd_flags: -ss -> -ss
Executing final command(s).
chsh: user information updated
Template Complete.

[web01]:
Copying files...
Copy complete.
Installing packages.
pkg already bootstrapped at /usr/local/sbin/pkg
vulnxml file up-to-date
0 problem(s) in the installed packages found.
Updating pkg.bastillebsd.org repository catalogue...
[poudriere] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[poudriere] Fetching packagesite.txz: 100% 121 KiB 124.3kB/s 00:01
Processing entries: 100%
pkg.bastillebsd.org repository update completed. 499 packages processed.
Updating bastillebsd.org repository catalogue...
[poudriere] Fetching meta.txz: 100% 560 B 0.6kB/s 00:01
[poudriere] Fetching packagesite.txz: 100% 121 KiB 124.3kB/s 00:01
Processing entries: 100%
bastillebsd.org repository update completed. 499 packages processed.
All repositories are up to date.
Checking integrity... done (0 conflicting)
The most recent version of packages are already installed
Updating services.
cron_flags: -J 60 -> -J 60
sendmail_enable: NONE -> NONE
syslogd_flags: -ss -> -ss
Executing final command(s).
chsh: user information updated
Template Complete.

 Note: FreeBSD introduced container technology twenty years ago, long before the
industry standardized on the term “container”. Internally, FreeBSD refers to
these containers as “jails”.

jail.conf

In this section we’ll look at the default config for a new container. The
defaults are sane for most applications, but if you want to tweak the settings
here they are.

A jail.conf template is used each time a new container is created. This
template looks like this:

{name} {
 devfs_ruleset = 4;
 enforce_statfs = 2;
 exec.clean;
 exec.consolelog = /usr/local/bastille/logs/{name}_console.log;
 exec.start = '/bin/sh /etc/rc';
 exec.stop = '/bin/sh /etc/rc.shutdown';
 host.hostname = {name};
 interface = {interface};
 mount.devfs;
 mount.fstab = /usr/local/bastille/jails/{name}/fstab;
 path = /usr/local/bastille/jails/{name}/root;
 securelevel = 2;

 ip4.addr = x.x.x.x;
 ip6 = disable;
}

devfs_ruleset

devfs_ruleset
 The number of the devfs ruleset that is enforced for mounting
 devfs in this jail. A value of zero (default) means no ruleset
 is enforced. Descendant jails inherit the parent jail's devfs
 ruleset enforcement. Mounting devfs inside a jail is possible
 only if the allow.mount and allow.mount.devfs permissions are
 effective and enforce_statfs is set to a value lower than 2.
 Devfs rules and rulesets cannot be viewed or modified from inside
 a jail.

 NOTE: It is important that only appropriate device nodes in devfs
 be exposed to a jail; access to disk devices in the jail may
 permit processes in the jail to bypass the jail sandboxing by
 modifying files outside of the jail. See devfs(8) for
 information on how to use devfs rules to limit access to entries
 in the per-jail devfs. A simple devfs ruleset for jails is
 available as ruleset #4 in /etc/defaults/devfs.rules.

enforce_statfs

enforce_statfs
 This determines what information processes in a jail are able to
 get about mount points. It affects the behaviour of the
 following syscalls: statfs(2), fstatfs(2), getfsstat(2), and
 fhstatfs(2) (as well as similar compatibility syscalls). When
 set to 0, all mount points are available without any
 restrictions. When set to 1, only mount points below the jail's
 chroot directory are visible. In addition to that, the path to
 the jail's chroot directory is removed from the front of their
 pathnames. When set to 2 (default), above syscalls can operate
 only on a mount-point where the jail's chroot directory is
 located.

exec.clean

exec.clean
 Run commands in a clean environment. The environment is
 discarded except for HOME, SHELL, TERM and USER. HOME and SHELL
 are set to the target login's default values. USER is set to the
 target login. TERM is imported from the current environment.
 The environment variables from the login class capability
 database for the target login are also set.

exec.consolelog

exec.consolelog
 A file to direct command output (stdout and stderr) to.

exec.start

exec.start
 Command(s) to run in the jail environment when a jail is created.
 A typical command to run is "sh /etc/rc".

exec.stop

exec.stop
 Command(s) to run in the jail environment before a jail is
 removed, and after any exec.prestop commands have completed. A
 typical command to run is "sh /etc/rc.shutdown".

host.hostname

host.hostname
 The hostname of the jail. Other similar parameters are
 host.domainname, host.hostuuid and host.hostid.

interface

interface
 A network interface to add the jail's IP addresses (ip4.addr and
 ip6.addr) to. An alias for each address will be added to the
 interface before the jail is created, and will be removed from
 the interface after the jail is removed.

mount.devfs

mount.devfs
 Mount a devfs(5) filesystem on the chrooted /dev directory, and
 apply the ruleset in the devfs_ruleset parameter (or a default of
 ruleset 4: devfsrules_jail) to restrict the devices visible
 inside the jail.

mount.fstab

mount.fstab
 An fstab(5) format file containing filesystems to mount before
 creating a jail.

path

path
 The directory which is to be the root of the jail. Any commands
 run inside the jail, either by jail or from jexec(8), are run
 from this directory.

securelevel

By default, Bastille containers run at securelevel = 2;. See below for the
implications of kernel security levels and when they might be altered.

Note: Bastille does not currently have any mechanism to automagically change
securelevel settings. My recommendation is this only be altered manually on a
case-by-case basis and that “Highly secure mode” is a sane default for most use
cases.

The kernel runs with five different security levels. Any super-user
process can raise the level, but no process can lower it. The security
levels are:

-1 Permanently insecure mode - always run the system in insecure mode.
 This is the default initial value.

0 Insecure mode - immutable and append-only flags may be turned off.
 All devices may be read or written subject to their permissions.

1 Secure mode - the system immutable and system append-only flags may
 not be turned off; disks for mounted file systems, /dev/mem and
 /dev/kmem may not be opened for writing; /dev/io (if your platform
 has it) may not be opened at all; kernel modules (see kld(4)) may
 not be loaded or unloaded. The kernel debugger may not be entered
 using the debug.kdb.enter sysctl. A panic or trap cannot be forced
 using the debug.kdb.panic and other sysctl's.

2 Highly secure mode - same as secure mode, plus disks may not be
 opened for writing (except by mount(2)) whether mounted or not.
 This level precludes tampering with file systems by unmounting
 them, but also inhibits running newfs(8) while the system is multi-
 user.

 In addition, kernel time changes are restricted to less than or
 equal to one second. Attempts to change the time by more than this
 will log the message "Time adjustment clamped to +1 second".

3 Network secure mode - same as highly secure mode, plus IP packet
 filter rules (see ipfw(8), ipfirewall(4) and pfctl(8)) cannot be
 changed and dummynet(4) or pf(4) configuration cannot be adjusted.

Copyright

This content is copyright Christer Edwards. All rights reserved.

Duplication of this content without the express written permission of the
author is not permitted.

Index

rdr

bastille rdr allows you to configure dynamic rdr rules for your containers
without modifying pf.conf (assuming you are using the bastille0 interface
for a private network and have enabled rdr-anchor ‘rdr/*’ in /etc/pf.conf
as described in the Networking section).

Note: you need to be careful if host services are configured to run
on all interfaces as this will include the jail interface - you should
sepcify the interface they run on in rc.conf (or other config files)

bastille rdr --help
Usage: bastille rdr TARGET [clear] | [list] | [tcp <host_port> <jail_port>] | [udp <host_port> <jail_port>]
bastille rdr dev1 tcp 2001 22
bastille rdr dev1 list
rdr on em0 inet proto tcp from any to any port = 2001 -> 10.17.89.1 port 22
bastille rdr dev1 udp 2053 53
bastille rdr dev1 list
rdr on em0 inet proto tcp from any to any port = 2001 -> 10.17.89.1 port 22
rdr on em0 inet proto udp from any to any port = 2053 -> 10.17.89.1 port 53
bastille rdr dev1 clear
nat cleared

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Bastille

 		
 Installation

 		
 PKG

 		
 ports

 		
 GIT

 		
 Network Requirements

 		
 Local Area Network

 		
 Public Network

 		
 /etc/pf.conf

 		
 Usage

 		
 Targeting

 		
 Examples: Containers

 		
 Examples: Releases

 		
 Bastille sub-commands

 		
 bootstrap

 		
 Releases

 		
 Example

 		
 Tips

 		
 Notes

 		
 Templates

 		
 Example

 		
 Tips

 		
 Notes

 		
 cmd

 		
 console

 		
 cp

 		
 create

 		
 destroy

 		
 htop

 		
 pkg

 		
 restart

 		
 service

 		
 start

 		
 stop

 		
 sysrc

 		
 top

 		
 update

 		
 upgrade

 		
 verify

 		
 Template

 		
 Applying Templates

 		
 jail.conf

 		
 devfs_ruleset

 		
 enforce_statfs

 		
 exec.clean

 		
 exec.consolelog

 		
 exec.start

 		
 exec.stop

 		
 host.hostname

 		
 interface

 		
 mount.devfs

 		
 mount.fstab

 		
 path

 		
 securelevel

 		
 Copyright

_images/htop.png
1 [0.5%]
2 [0.0%]
3 [0.0%]
4 [0.0%]
MemC[[[[II11TTIIIIITT117.146/24.0G]
Swp[0K/2.00G]

o ~NoO U
Lo N o T |

[=N-N-N<)
[=N-N-N<)
o° o o° o°
[|

Tasks: 8, 0 thr; 1 running

Load average:

0.04 0.10 0.08

Uptime: 10 days, 22:27:09

52
36867 nobody 20
36263 nobody 20
35024 nobody 20
34907 nobody 20
40049 root 20
71424 root 20

[CNcNONONONONS)

11236
11236
11236
11236
6464
7160

7556
7552
7540
7552
2372
4124

TUOLULnnvmuvom

[CNcNONONONONS)
[CNcNONONONONS)

[CNcNONONONONS)
[CNcNONONONONS)
[CNcNONONONONS)

:00.
:00.
:00.
:00.
:00.
:00.
:00.

00 nginx: master process /

11 nginx: worker proces
18 nginx: worker proces
09 nginx: worker proces
28 nginx: worker proces
06 /usr/sbin/cron -J 60 -s

13 /usr/local/bin/htop

FHelp [@Setup [@Searchl@lFilter|@SortedgdCollap|@iNice -[@Nice +[@Kill [@HjQuit |

_images/top.png
last pid: 96267; 1load averages: 0.16, 0.17, 0.11 up 10+22:37:33 21:59:07
8 processes: 1 running, 7 sleeping
CPU: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
Mem: 6768K Active, 323M Inact, 15G Wired, 7891M Free
ARC: 8391M Total, 4004M MFU, 3376M MRU, 64K Anon, 68M Header, 943M Other
5937M Compressed, 11G Uncompressed, 1.84:1 Ratio
Swap: 2048M Total, 2048M Free

i

PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND
96267 root 1 20 0 7916K 3192K CPU1 1 0:00 0.01% top
34907 nobody 1 20 0 11236K 7552K kqread 6 0:00 0.00% nginx
36263 nobody 1 20 0 11236K 7552K kqread 4 0:00 0.00% nginx
36867 nobody 1 20 0 11236K 7556K kqread 2 0:00 0.00% nginx
35024 nobody 1 20 0 11236K 7540K kqread 6 0:00 0.00% nginx
40049 root 1 20 0 6464K 2372K nanslp 4 0:00 0.00% cron
10201 root 0 0 6412K 2368K select 5 (0J0]0] 0.00% syslogd
34902 root 1 52 0 11236K 6920K pause 4 0:00 0.00% nginx

